Electrical Tracking of the Mott Insulating Kitaev Magnet using Graphene/α‐RuCl3 Heterostructure

Author:

Chau Tuan Khanh1,Choi Youngsu1,Hwang Kyusung2ORCID,Oh Gyounghoon1,Akhtar Sophia1,Kim Jeongyong1,Choi Kwang‐Yong3,Lee Hyun‐Yong4,Hong Sung Ju5,Suh Dongseok6ORCID

Affiliation:

1. Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea

2. School of Physics Korea Institute for Advanced Study (KIAS) Seoul 02455 Republic of Korea

3. Department of Physics Sungkyunkwan University Suwon 16419 Republic of Korea

4. Department of Applied Physics Division of Display and Semiconductor Physics Interdisciplinary Program in E•ICT‐Culture‐Sports Convergence Korea University Sejong 30019 Republic of Korea

5. Division of Science Education Kangwon National University Chuncheon 24341 Republic of Korea

6. Department of Physics Ewha Womans University Seoul 03670 Republic of Korea

Abstract

AbstractElectrical signatures for quantum magnetic phases of α‐RuCl3 sensed by an adjacent graphene field‐effect transistor (FET) are reported. The gate‐voltage dependence of the graphene FET reveals p‐type doping beneath α‐RuCl3 caused by the charge transfer due to the work function difference. Furthermore, the gate‐voltage hysteresis exhibits a marked change in the transport behavior with the temperature variation. The high‐T simple paramagnetic phase and the low‐T zigzag antiferromagnetic phase of α‐RuCl3 exhibit negligible hysteresis. In sharp contrast, a huge hysteresis of the graphene FET at intermediate temperatures is observed. The possibility that the observed conductance hysteresis is associated with the intriguing continuum excitations of the thermally induced Kitaev paramagnet state is discussed. The results show that the proximity effect‐based electric approach can be utilized for investigating charge‐neutral quasiparticles in quantum magnetic insulators.

Funder

Korea Institute for Advanced Study

Ewha Womans University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3