Thermo‐Responsive Trilayered Fibrous Dressing with Liquid Gate for Dynamical Exudate Regulation and Wound Moisture Balance

Author:

Qiu Zhiye1,Gao Yujie1,Qi Dongming1,Wu Minghua1,Mao Zhengwei2ORCID,Wu Jindan1ORCID

Affiliation:

1. MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou 310018 China

2. MOE Key Laboratory of Macromolecular Synthesis and Functionalization Zhejiang University Hangzhou 310027 China

Abstract

AbstractExudate plays a crucial role in wound healing, but an excessive amount can lead to over‐hydration of tissue and aggravating the infection and the injury. On the other hand, inadequate exudate can cause scarring and hinder healing. Traditional wound dressings are unable to regulate exudate levels based on the specific needs of the wound. To address this issue, a liquid‐gated trilayered fibrous wound dressing capable of pumping fluid in a temperature‐dependent manner is developed. This dressing comprises a hydrophilic cotton layer, a thermo‐sensitive (TPPU) layer, and a hydrophobic layer of polyurethane (PU) nanofibers. The TPPU layer is constituted by nanofibers that are composed of an upper critical solution temperature (UCST)‐type polymer, PU, and silver nanoparticles. The intermediate TPPU layer exhibits changes in its wettability upon heating, adjusting the thickness of the hydrophobic layer and ultimately achieving the appropriate structure for guiding spontaneous fluid transport. The positive effect of this novel dressing on diabetic wounds is observed, as it enhanced epithelialization and collagen synthesis while reducing inflammation, ultimately accelerating the wound healing process. This dressing has the potential to provide a groundbreaking solution for managing exudate, achieving moisture balance and promoting wound healing in clinical settings.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3