A Rooted Multifunctional Heterogeneous Interphase Layer Enabled by Surface‐Reconstruction for Highly Durable Sodium Metal Anodes

Author:

Cao Liang12,Guo Jia1,Feng Yong1,Li Yue1,Qiu Yawen1,Zhu Wenxuan1,Tan Yajun3,Sun Chencheng4,Rui Xianhong5,Geng Hongbo1ORCID

Affiliation:

1. School of Materials Engineering Changshu Institute of Technology Changshu Jiangsu 215500 P. R. China

2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China

3. Phylion Battery Co, Ltd Suzhou 215153 P. R. China

4. School of Electronic and Information Engineering Jiangsu Laboratory of Advanced Functional Materials Changshu Institute of Technology Changshu Jiangsu 215500 P. R. China

5. Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractSodium plating–stripping with high reversibility is still an intractable challenge for sodium metal‐based batteries due to the fragile natural solid‐electrolyte interphase (SEI) film and severe Na dendrites growth. Herein, a surface reconstruction strategy is proposed and a rooted heterogeneous interlayer derived from in situ reactions between tin selenide and Na metal (abbr. Na/SnSe) is produced to regulate Na+ deposition behavior and impede dendrite growth. The high sodiophilic Na15Sn4 component demonstrates the robust combination and dendrite suppression capability, inhibiting fracture and delamination problems during volume variation. Meanwhile, the superionic Na2Se ingredient contributes to the optimized Na+ conduction efficiency and low nucleation overpotential, enabling uniform distribution of electrical fields and ultimately eliminating Na dendrites. Consequently, the reconfigured multifunctional Na/SnSe interphase realizes a long‐term lifespan over 2400 h at 0.5 mA cm−2/1 mAh cm−2 in symmetric cell with an extremely low voltage hysteresis. Moreover, the assembled Na/SnSe||NaNi1/3Fe1/3Mn1/3O2 pouch cell achieves exceptional cycling stability and capacity retention (90.4 mAh g−1 after 1800 cycles at a high current density of 2 A g−1), exploiting an avenue for designing durable SEI layer and high‐quality sodium metal batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3