In Situ Atomic‐Scale Evidence of Unconventional Plastic Behavior at The Crack Tip in AuCu Nanocrystals

Author:

Yang Chengpeng12,Fu Libo1,Ma Yan1,Wang Zhanxin1,Li Dongwei1,Shao Ruiwen3,Wu Ziqi3,Zhang Ze4,Zhai Yadi1,Li Ang1,Wang Lihua1ORCID,Han Xiaodong1

Affiliation:

1. Department of Materials and Manufacturing Institute of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 China

2. Suzhou Institute of Nanotech and Nanobionics Chinese Academy of Science Suzhou 215123 China

3. Beijing Advanced Innovation Center for Intelligent Robots and Systems School of Medical Technology Beijing Institute of Technology Beijing 100081 China

4. Department of Materials Science Zhejiang University Hangzhou 310008 China

Abstract

AbstractUnderstanding the plastic behavior of crack tips is crucial for improving the fracture toughness of nanometals. Although many studies are carried out, most previous studies focus on pure metals, and how the crack tip accommodates the plastic deformation of highly concentrated solid‐solution alloys is unclear owing to a lack of direct atomic‐scale evidence. In this study, the atomic‐scale plastic behavior of the crack tip in face‐centered cubic (FCC) AuCu alloy nanocrystals is observed in situ, which provides direct evidence that plastic deformation is governed by the generation of deformation twins and hexagonal close‐packed (HCP) 2H and 4H phases, recurrence of reversible FCC‐HCP phase transitions, and detwinning, which are rarely observed in pure metals. This unusual behavior originates from the inherent chemical inhomogeneity of the AuCu alloy, which inhibits twin thickening via partial dislocations on the adjacent plane, instead of random generation of deformation twins, phase transitions, and reversible processes. This naturally implies a similar behavior at the crack tip in other highly concentrated solid‐solution alloys, including high‐medium‐entropy alloys, providing important insights that greatly improve the understanding of the fracture toughness of metallic materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3