Metrology of Platinum Nanozymes: Mechanistic Insights and Analytical Issues

Author:

Cursi Lorenzo1ORCID,Mirra Giulia12ORCID,Boselli Luca1ORCID,Pompa Pier Paolo1ORCID

Affiliation:

1. Nanobiointeractions&Nanodiagnostics Istituto Italiano di Tecnologia (IIT) Via Morego 30 Genova 16163 Italy

2. Department of Chemistry and Industrial Chemistry University of Genova Via Dodecaneso 31 Genova 16146 Italy

Abstract

AbstractThanks to their properties, stability, and multifunctionality, nanozymes are increasingly impacting several fields, including medicine, diagnostics, and environmental science. However, clear information about their catalytic properties and mechanisms is still lacking. Several critical issues are currently under discussions, such as the absence of univocally accepted catalytic mechanisms, standardized protocols for directly comparing nanozymes versus enzymes, and a comprehensive characterization of their performance in different chemical/biological environments. All these issues strongly limit the advancement of the field. Herein, nanozymes metrology and analysis of both catalytic mechanisms and methodological procedures are attempted, taking platinum nanozymes as a case study thanks to their multifunctional catalytic features. The oxidoreductase activities of Pt‐nanozymes (i.e., peroxidase‐, oxidase‐, and catalase‐like reactions) are critically investigated in different physical/chemical environments, clarifying fundamental aspects and providing general methodological guidelines for nanozyme properties characterization. Furthermore, PtNP activities are compared with natural enzymes in different conditions, and their performance and catalytic behavior are evaluated by calculating the turnover frequency (TOF) with different normalization strategies. The results highlight that Pt‐nanozymes are efficient catalysts, exhibiting outstanding catalase‐like activity. This work clarifies several key points concerning Pt‐nanozyme properties and general metrological issues, providing a workflow that can become a reference for several nanozymes characterizations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3