Unraveling Electronic Microenviroment of Iron Single Atom Modulated by Nitrogen‐Bridged Ligands in MBene Toward Bilateral Sulfur Redox Chemistry

Author:

Zhang Xinlu1ORCID,Bai Xuexiu1,Wei Chuanliang2,Xi Baojuan2,Xiong Shenglin2,Feng Jinkui1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education) Research Center for Carbon Nanomaterials School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China

2. Shenzhen Institute of Shandong University Shenzhen 518057 P. R. China

Abstract

AbstractExploring functional substrates for single‐atom electrocatalysts and precisely modulating their electronic microenvironments are of significant importance for sulfur redox chemistry in lithium‐sulfur batteries (LSBs) with unsatisfactory shuttle effects and sluggish redox kinetic. Herein, the electronic microenvironment of atomic ion (Fe) is rationally unraveled and modulated by nitrogen (N)‐bridged ligands that are engineered by metallic vacancies in MoB spontaneously trapping atomic Fe by fluorine‐free organic molten salt in situ etching and self‐reduction strategy. Intriguingly, these atomic Fe can be coordinated with adjacent in‐plane boron (B), lattice oxygen (O) and axial bridged N‐doped carbon (NC) to construct the distinctive Fe configuration (FeB4‐O‐NC‐MoB). Theorical calculations and experimental investigations unveil the electronic microenvironment of Fe disturbed from axial bridged N to construct octahedra configuration that can reinforce adsorption energy and lower energy barrier by Fe‐S and N‐Li bonds to suppress shuttle effect and expedite bidirectional redox kinetics. Thus, FeB4‐O‐NC‐MoB modified separator in LSBs delivers impressive reversible capacities (765 mAh g−1 at 0.5 C after 500 cycles and 541.9 mAh g−1 at 2 C after 5000 cycles). This work affords a feasible strategy for modulating electronic microenvironment by manipulating coordination configuration of single‐atom electrocatalyst to boost the bilateral sulfur redox chemistry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shenzhen Fundamental Research Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3