Interlayer Polymerization of 2D Chiral Perovskite Single‐Crystal Films toward High‐Performance Flexible Circularly Polarized Light Detection

Author:

Zhao Yingjie1,Yin Xing1,Gu Zhenkun1,Yuan Meng2,Ma Jianpeng2,Li Tenglong2,Jiang Lei2,Wu Yuchen2,Song Yanlin3ORCID

Affiliation:

1. College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China

2. Key Laboratory of Bio‐inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

3. Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

Abstract

Abstract2D chiral perovskite has greatly boosted the development of optoelectronic devices, ranging from nonlinear optics, spintronics, and ferroelectrics to energy harvesting devices. Despite circularly polarized light (CPL) detection based on chiral perovskite has been achieved, the environmental humidity‐, ultraviolet (UV), and temperature‐induced structural degradation and its large electro‐phonon coupling restrict its commercial application. Here, this study first realizes polymerized chiral perovskite single‐crystal films by combining in situ cross‐linking polymerization with the space‐confined crystallization method. Compared with uncross‐linked chiral perovskites, cross‐linked chiral perovskites exhibit enhanced crystallinity and lattice rigidity, yielding high‐performance circularly polarized photodetectors with a maximum anisotropy factor of 0.22, the responsivity of 1.6 A W−1, and detectivity of 2.17 × 1013 Jones. In addition, flexible circularly polarized photodetectors with extremely high mechanical stability are also realized originating from the polymer‐like behavior of cross‐linked chiral perovskite single‐crystal films. This study opens up new avenues to further enhance the performance and stability of portable and wearable devices based on chiral perovskites.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3