Accelerating Macroscale Superlubricity through Carbon Quantum Dots on Engineering Steel Surfaces

Author:

Du Changhe12,Yang Tao12,Yu Tongtong13,Zhang Liqiang13,Sui Xudong123,Feng Yange14,Wang Xiaobo12,Wang Daoai12ORCID

Affiliation:

1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Qingdao Center of Resource Chemistry and New Materials Qingdao 266100 China

4. Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing Yantai 265503 China

Abstract

AbstractMacroscale superlubricity on engineering steel surfaces offers a promising solution for minimizing friction and wear in engineering applications. However, achieving superlubricity typically requires a long running‐in period, which may result in significant wear for the friction pair. Herein, a new lubricant with superlubricating properties is rationally designed by using polyethylene glycol (PEG) and critic acid (CA) under complexing effect with a running‐in period of about 800 s. Importantly, the introduction of carbon quantum dots (CQDs) obtained from the pyrolysis of CA into PEG aqueous solution shortens the running‐in period for achieving macroscale superlubricity (µ ≈ 0.005) between steel/steel contact to 44 s. The corresponding wear rate (1.15 × 10−7 mm3 N−1 m−1) on the steel disk is reduced by 77% due to the shorter running‐in time. Furthermore, the surface analysis combined with the molecular dynamics simulations demonstrates that CQDs easily adsorb on the surface of the friction pair, forming a carbon film that reduces interaction energy between the lubricant molecules and the substrate. This work provides new insights into the lubrication mechanism of CQDs and contributes to the design of liquid superlubricants with short running‐in periods and low wear rates on engineering steel surfaces.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3