Magnesium‐Ion Battery Anode from Polymer‐Derived SiOC Nanobeads

Author:

Guo Wuqi1,Icin Oyku2ORCID,Vakifahmetoglu Cekdar2ORCID,Kober Delf1,Gurlo Aleksander1ORCID,Bekheet Maged F.1ORCID

Affiliation:

1. Technische Universität Berlin Faculty III Process Sciences, Institute of Materials Science and Technology Chair of Advanced Ceramic Materials Straße des 17. Juni 135 10623 Berlin Germany

2. Department of Materials Science and Engineering Izmir Institute of Technology Urla Izmir 35430 Turkey

Abstract

AbstractTin‐containing silicon oxycarbide (SiOC/Sn) nanobeads are synthesized with different carbon/tin content and tested as electrodes for magnesium‐ion batteries. The synthesized ceramics are characterized by thermogravimetric‐mass spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction (XRD), Raman spectroscopy, N2 sorption analysis, scanning electron microscope, energy‐dispersive X‐ray, and elemental analysis. Galvanostatic cycling tests, rate performance tests, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) tests, and ex situ XRD measurements are conducted. Results of battery performance tests present a high capacity of 198.2 mAh g−1 after the first discharging and a reversible capacity of 144.5 mAh g−1 after 100 cycles at 500 mA g−1. Excellent rate performance efficiency of 85.2% is achieved. Battery performances in this research are influenced by surface area, and tin contentof the SiOC/Sn nanobeads. EIS, CV tests, and ex situ XRD measurements reveal that higher surface area contributes to higher capacity by providing more accessible Mg2+ ion storage sites and higher rate capability by improving the diffusion process. Higher Sn content increases battery capacity through reversible Mg‐Mg2Sn‐Mg alloying/dealloying process and improves the rate performances by increasing electrical conductivity. Besides, SiOC advances cycling stability by preventing electrode collapse and enhances the capacity due to higher surface capacitive effects.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3