Realizing Ultrahigh Thermoelectric Performance in n‐Type PbSe Through Lattice Planification and Introducing Liquid‐Like Cu Ions

Author:

Pang Huimei1,Qin Yongxin1,Qin Bingchao1ORCID,Yu Lingxiao2,Su Xianli2,Liang Hao3,Ge Zhen‐Hua3,Cao Qian4,Tan Qing1,Zhao Li‐Dong1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 China

3. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

4. Huabei Cooling Device Co. LTD. Hebei 065400 China

Abstract

AbstractThe coupling relationship between electrical and thermal transports makes it rather challenging to enhance thermoelectric performance. Here, electrical and thermal transports are successfully decoupled to realize high performance in n‐type PbSe by utilizing a stepwise strategy. First, the PbSe lattice is plained with extra Pb to compensate for the intrinsic Pb vacancies, which can weaken defect scattering and improve carrier mobility to ≈1230 cm2 V−1 s−1. The room‐temperature power factor triples and reaches ≈32 µW cm−1 K−2, and ZT is significantly enhanced to ≈0.6 in Pb1.006Se. Subsequently, liquid‐like interstitial Cu ions are introduced to inhibit heat conduction without damaging electrical transport. While maintaining a high power factor of ≈25 µW cm−1 K−2, Cu ions strongly suppress phonon transport at high temperature, leading to an ultralow lattice thermal conductivity of ≈0.28 W m−1 K−1 in Pb1.006Cu0.006Se, only 30% of the Cu‐free PbSe. Eventually, a remarkable peak ZT of ≈1.8 at 773 K is achieved along with a high average ZT of ≈1.1 from 300 to 823 K in Pb1.006Cu0.006Se. An outstanding experimental conversion efficiency of ≈7.1% is obtained in the single‐leg device, demonstrating great potential for PbSe as low‐ to mid‐temperature thermoelectrics.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Higher Education Discipline Innovation Project

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3