Preserving the Li {110} Texture to Achieve Long Cycle Life in Li Metal Electrode at High Rates

Author:

Hu Xitao1ORCID,Gao Yao1ORCID,Sun Yongming2,Hou Zhen3,Luo Yufeng4,Wang Danni3,Wang Jiangpeng1,Zhang Biao3ORCID,Zheng Zijian4ORCID,Li Quan1ORCID

Affiliation:

1. Department of Physics The Chinese University of Hong Kong Shatin, New Territories Hong Kong 999077 China

2. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

3. Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong 999077 China

4. Laboratory for Advanced Interfacial Materials and Devices Research Center for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Kowloon Hong Kong 999077 China

Abstract

Abstract{110} textured Li metal electrode shows superior cycle performance when compared to its counterparts with other crystallographic textures or no texture. However, at high rates it suffers from a shortened cycle life that becomes significant with large cycling capacities – a common problem for most alkaline metal electrodes. In the present work, the morphological and structural evolution of the texture‐dependent Li electrodes cycled at different current densities is investigated and discovered that the cycling current density affected both the morphological and the crystallographic texture evolution of Li {110} metal electrode. In particular, loss of {110} texture at increased current densities accelerated the morphological deterioration of Li, leading to roughened Li plating and loose Li packing, and thus promoting the undesired consumption of Li and electrolyte. Thereafter a low‐rate‐healing strategy that significantly elongated the cycle life of Li metal electrode cycled at high rates is proposed. By adopting the healing strategy, a Li||Li symmetrical cell cycled at 10 mA cm−2 with a capacity of 10 mAh cm−2(with a 50% depth of discharge) can last for >800 runs, and a Li||LFP full cell can run for >300 cycles at 5 C with virtually no capacity degradation compared to the first cycle after activation.

Funder

Hong Kong Institute of Educational Research, Chinese University of Hong Kong

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3