High Oxide‐Ion Conductivity through the Interstitial Oxygen Site in Sillén Oxychlorides

Author:

Yaguchi Hiroshi1ORCID,Morikawa Daisuke2ORCID,Saito Takashi3ORCID,Tsuda Kenji4,Yashima Masatomo1ORCID

Affiliation:

1. Department of Chemistry School of Science Tokyo Institute of Technology 2‐12‐1‐W4‐17, O‐okayama Meguro‐ku Tokyo 152‐8551 Japan

2. Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai 980‐8577 Japan

3. Institute of Materials Structure Science High Energy Accelerator Research Organization (KEK) Tokai Ibaraki 319‐1106 Japan

4. Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980‐8578 Japan

Abstract

AbstractOxide‐ion conductors are gaining attention as future materials in energy applications, such as solid oxide fuel cells. Many Bi‐containing compounds exhibit high oxide‐ion conductivity via conventional vacancy mechanism. However, interstitial oxide‐ion conduction is rare in Bi‐containing materials. Herein, high oxide‐ion conductivity is reported through interstitial oxygen sites in Sillén oxychlorides, LaBi2−xTexO4+x/2Cl (Bi2LaO4Cl‐based oxychlorides). Oxide‐ion conductivity of LaBi1.9Te0.1O4.05Cl is 20 mS cm−1 at 702 °C, and higher than best oxide‐ion conductors as Bi2V0.9Cu0.1O5.35 below 201 °C. Despite of the presence of Bi and Te species, LaBi1.9Te0.1O4.05Cl shows extremely high chemical and electrical stability at 400 °C from oxygen partial pressure 10−25 to 0.2 atm and high chemical stability under CO2 flow, wet 5% H2 in N2 flow, and air with natural humidity. Neutron scattering length density analysis, DFT calculations, and ab initio molecular dynamics simulations indicate that the extremely high oxide‐ion conduction is attributed to cooperative diffusion through interstitial oxygen sites (interstitialcy diffusion mechanism) in triple fluorite‐like layers. The present findings demonstrate the ability of LaBi2−xTexO4+x/2Cl as superior oxide‐ion conductors, which can open new horizons for oxide‐ion conductors.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3