Quasi–1D Anhydrite Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Gypsum for Future Martian‐Based Electronics

Author:

Wei Cencen1,Roy Abhijit23,Aljarid Adel K. A.1,Hu Yi4,Roe S. Mark5,Papageorgiou Dimitrios G.4,Arenal Raul236,Boland Conor S.1ORCID

Affiliation:

1. School of Mathematical and Physical Sciences University of Sussex Brighton BN1 9QH UK

2. Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC‐Universidad de Zaragoza Zaragoza 50009 Spain

3. Laboratorio de Microscopias Avanzadas (LMA) Universidad de Zaragoza Calle Mariano Esquillor Zaragoza 50018 Spain

4. School of Engineering and Materials Science Queen Mary University London E1 4NS UK

5. School of Life Sciences University of Sussex Brighton BN1 9QH UK

6. ARAID Foundation Zaragoza 50018 Spain

Abstract

AbstractThe sky is the limit with regards to the societal impact nanomaterials can have on the lives. However, in this study, it is shown that their potential is out of this world. The planet Mars has an abundant source of calcium sulfate minerals and in this work, it is shown that these deposits can be the basis of transformative nanomaterials to potentially support future space endeavors. Vitally, the methods applied are low cost and require no specialized instruments of great expertise, strengthening the potential involvement of nanotechnology in sustaining Martian inhabitation. Through a scalable eco‐friendly liquid processing technique performed on two common terrestrial gypsum, this simple method presented a cost‐efficient procedure to yield suspensions of large aspect ratio anhydrite nanobelts with long‐term stability that are characterized through scanning electron microscopy and Raman spectroscopy. Transmission electron microscopy shows nanobelts to have a mesocrystal structure, with distinct nanoparticle constituents making up the lattice. Unexpectedly, anhydrite nanobelts have remarkable electronic properties, namely a bandgap that is easily tuned between semiconducting (≈2.2 eV) and insulating (≈4 eV) behaviors through dimensional control measured via atomic force microscopy. To demonstrate the application potential of the nanobelts; optoelectronic, electrochemical, and nanocomposite measurements are made.

Funder

H2020 European Research Council

Royal Society

Saudi Arabian Cultural Bureau

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3