Affiliation:
1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education College of Textile Science and Engineering Zhejiang Sci‐Tech University Xiasha Higher Education Park Avenue 2 No.928 Hangzhou 310018 China
2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
3. Department of Chemical Engineering Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
Abstract
AbstractStructurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献