Affiliation:
1. Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China
2. Hangzhou Vocational & Technical College Ecology and Health Institute Hangzhou 310032 P. R. China
3. Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis Hong Kong Baptist University Kowloon Tong Hong Kong SAR 999077 P. R. China
4. Shaoxing Research Institute Zhejiang University of Technology Shaoxing Zhejiang 312000 P. R. China
Abstract
AbstractThe development of stable Janus architectures suitable for biphasic applications holds significant importance. A novel approach is introduced for interfacial supramolecular self‐assembly, resulting in 2D Janus nanosheets (OA‐TA/Fe) exhibiting an amphiphilic nature. These nanosheets consist of hydrophilic coordination complexes of ferric ions (Fe3+) and tannic acid (TA) on one side of both surfaces and hydrophobic alkyl chains on the other side of both surfaces. The synthesis of these 2D Janus nanosheets involves a simple, ultrafast, and environmentally benign process, eliminating the need for time‐consuming multistep procedures and harsh synthetic conditions typically associated with Janus architecture formation. By exploiting the inherent singular anisotropic wettability inherent in OA‐TA/Fe‐2, the efficacy of these innovative Janus nanosheets in the efficient separation of various organic liquid‐in‐water and water‐in‐organic liquid emulsions is elucidated. Subsequent post‐modification of OA‐TA/Fe has facilitated the highly efficient remediation of contaminated oily wastewater, serving as a model biphasic catalysis reaction, wherein the Janus nanosheets function simultaneously as emulsifiers and catalysts within biphasic mixtures. The methodology establishes a rapid self‐assembly approach for the creation of amphiphilic free‐standing Janus nanosheets, offering compelling prospects for their application in diverse fields, as exemplified by, but not limited to, the case studies presented herein.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Provincial Universities of Zhejiang
China Postdoctoral Science Foundation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献