Cascade‐Responsive “Oxidative Stress Amplifiers” Simultaneously Destroy Lysosomes and Co‐Deliver CRISPR/Cas9 to Enhance Oxidative Damage in Tumor

Author:

Liang Yan1,Han Wenshuai1,Xu Chenlu1,Wang Jinjin1,Zhang Jingge1,An Jingyi1,Liu Wei1,Liu Junjie1,Zhang Zhenzhong1ORCID,Shi Jinjin1ORCID,Zhang Kaixiang1ORCID

Affiliation:

1. School of Pharmaceutical Sciences Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractAmplifying intracellular oxidative stress by organelle‐targeted reactive oxygen species (ROS) production combined with tumor cell‐specific gene disruption is a promising strategy for tumor treatment. However, due to the vulnerability of CRISPR/Cas9 ribonucleoproteins (RNPs) to ROS, co‐delivery of CRISPR/Cas9 RNPs and ROS generators to enhance the sensitivity of tumor cells to oxidative stress remains challenging. Herein, a cascade‐responsive “oxidative stress amplifier” (named DR‐TAF‐pHT/FA) is proposed, which can successively respond to cathepsin B, localized laser irradiation and ATP to generate ROS on the lysosomal membrane of tumor cells and release Cas9/sgNrf2 RNPs for efficient gene disruption. It is demonstrated that, under near infrared (NIR) irradiation, DR‐TAF‐pHT/FA achieves targeted rupture of lysosomal membranes, inducing significant intracellular oxidative stress. Meanwhile, due to the protective function of TAF coating (TA‐Fe3+ coordination self‐assembled networks), Cas9/sgNrf2 RNPs can safely escape into the cytoplasm and be released in response to ATP, further amplifying oxidative stress and promoting tumor cell apoptosis through efficient Nrf2 gene disruption. Treatment with DR‐TAF‐pHT/FA + NIR significantly improves tumor ablation efficiency and extends median survival time (over 70 days) in Hela xenograft models. This “oxidative stress amplifier” provides a new paradigm for multimodal and synergistic tumor therapy through precise lysosomal membrane bursting together with efficient Nrf2 gene disruption.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3