Laser‐Induced Real‐Space Topology Control of Spin Wave Resonances

Author:

Titze Tim1ORCID,Koraltan Sabri23ORCID,Schmidt Timo4,Möller Marcel56,Bruckner Florian2ORCID,Abert Claas27ORCID,Suess Dieter27ORCID,Ropers Claus568ORCID,Steil Daniel1ORCID,Albrecht Manfred4ORCID,Mathias Stefan18

Affiliation:

1. University of Göttingen, I. Physikalisches Institut 37077 Göttingen Germany

2. Physics of Functional Materials Faculty of Physics University of Vienna Vienna 1090 Austria

3. Vienna Doctoral School in Physics University of Vienna Vienna 1090 Austria

4. Institute of Physics University of Augsburg 86135 Augsburg Germany

5. University of Göttingen, IV. Physikalisches Institut 37077 Göttingen Germany

6. Max Planck Institute for Multidisciplinary Sciences 37077 Göttingen Germany

7. Research Platform MMM Mathematics‐Magnetism‐Materials University of Vienna Vienna 1090 Austria

8. University of Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC) 37077 Göttingen Germany

Abstract

AbstractFemtosecond laser excitation of materials exhibiting magnetic spin textures promises advanced magnetic control via the generation of non‐equilibrium spin dynamics. Ferrimagnetic [Fe(0.35 nm)/Gd(0.40 nm)]160 multilayers are used to explore this approach, as they host a rich diversity of magnetic textures from stripe domains at low magnetic fields, a dense bubble/skyrmion lattice at intermediate fields, and a single domain state for high magnetic fields. Using femtosecond magneto‐optics, distinct coherent spin wave dynamics are observed in this material in response to a weak laser excitation, enabling an unambiguous identification of the different magnetic spin textures. Moreover, employing strong laser excitation, versatile control of the coherent spin dynamics via non‐equilibrium transformation of magnetic spin textures becomes possible by both creating and annihilating bubbles/skyrmions. Micromagnetic simulations and Lorentz transmission electron microscopy with in situ optical excitation corroborate these findings.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3