Enzyme‐Responsive Polyion Complex Nanoparticles of Cationic Antimicrobials for Activatable Antibacterial Therapy

Author:

Zhang Bo1ORCID,Lu Derong1,Wang Dennis Bao Rong1,Kok Zhi Yuan1,Chan‐Park Mary B.1,Duan Hongwei12ORCID

Affiliation:

1. School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore

2. Lee Kong Chian School of Medicine Nanyang Technological University 59 Nanyang Drive Singapore 636921 Singapore

Abstract

AbstractA self‐assembled “caging” strategy is presented for the safe delivery of potent cationic antimicrobials that suffer from non‐specific toxicity for the effective treatment of in vivo systemic bacterial infection. The key development here is a new block copolymer consisting of a poly(ethylene glycol) (PEG) stealth block and an anionic and lipase‐degradable block of poly(ɛ‐caprolactone) (PCL) and phosphonic acid‐bearing methacrylate copolymer, synthesized by hybrid copolymerization of methacrylate and cyclic esters. The anionic blocks electrostatically interact with cationic antimicrobials to form neutrally charged polyion complexes with the PEG blocks on the surface. The PCL component imparts the nanocomplex with biodegradability by bacterial secretory lipase. In the proof‐of‐concept study, cationic polyimidazolium that shows excellent antibacterial activity but severe toxicity is packaged by the block copolymer into nanocomplexes, which are stable in complex environments of high salt and protein concentrations and released the antimicrobials upon degradation of the copolymer by bacteria‐secreted lipase. The “caging” formulation of polyimidazolium eliminated its toxicity and led to highly effective bactericidal performance comparable to free polyimidazolium. This caging strategy does not require sophisticated chemical modification of cationic antimicrobials, offering a broadly applicable formulation strategy to overcome their common toxicity issue that has become a primary translational barrier.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3