Affiliation:
1. Chimie ParisTech Institut de Recherche de Chimie Paris Université Paris Sciences & Lettres CNRS UMR8247, 11 rue Pierre et Marie Curie Paris 75005 France
2. Laboratoire Léon Brillouin Université Paris‐Saclay UMR12 CEA‐CNRS, CEA Saclay, 3 rue Joliot Curie Gif sur Yvette cedex 91191 France
3. Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI) CY Cergy Paris Université 5 mail Gay Lussac Cergy‐Pontoise Cedex 95031 France
Abstract
AbstractElectroactive liquid crystal elastomers (eLCEs) are used to make actuators and soft robotics. However, most eLCEs are monofunctional with one type of deformation (bending or contraction). Recently, a trilayer eLCE are reported by combining ion‐conducting LCE and ionic electroactive polymer device (i‐EAD). This i‐EAD‐LCE is bifunctional and performs either bending or contractile deformation by controlling low‐voltage stimulation. Nevertheless, it has a Young's modulus of only 1.63 MPa. To improve the mechanical performance, the i‐EAD‐IPN‐LCE is prepared here, whose central membrane is composed of interpenetrating LCE and ionogel (i‐IPN‐LCE) instead of a single ion‐conducting LCE. This i‐EAD‐IPN‐LCE with a typical thickness of 0.5 mm can function not only as linear and bending actuators, but also as a sensor. As a linear actuator, its Young's modulus, actuation stress, and strain are 51.6 MPa, 0.14 MPa and 9%, respectively, reaching skeletal muscles’ values. As a bending actuator, its bending strain difference Δε is 1.18% with 3 mN output force. It can also operate as a sensor producing 0.4 mV Open‐Circuit‐Voltage to respond to bending deformation (Δε = 9%). Therefore, this i‐EAD‐IPN‐LCE is a promising system for the fabrication of robust electroactive devices and sensors with multiple degrees of freedom.
Funder
China Scholarship Council
Agence Nationale de la Recherche
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献