Unlocking Quasi‐Monophase Behavior in NASICON Cathode to Drive Fast‐Charging Toward Durable Sodium‐Ion Batteries

Author:

Zhao Xin‐Xin1,Wang Xiao‐Tong2,Gu Zhen‐Yi2,Guo Jin‐Zhi2,Cao Jun‐Ming2,Liu Yan2,Li Jie1,Huang Zhi‐Xiong2,Zhang Jing‐Ping1,Wu Xing‐Long2ORCID

Affiliation:

1. Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China

2. MOE Key Laboratory for UV Light‐Emitting Materials and Technology Department of Physics Northeast Normal University Changchun 130024 P. R. China

Abstract

AbstractThe NASICON cathode, Na3V2(PO4)3, has garnered significant attention due to its robust framework with fast Na+ migration. To expand its application scenarios by diversified electronic reaction, the substitution of vanadium with cost‐effective and abundant redox elements is a special research topic. Nevertheless, in terms of reducing toxicity, increasing Na content and widening voltage range, the V4+/5+ redox couple in Na4FeV(PO4)3 often accompanies asymmetric and irreversible electrochemical reactions that pose a dilemma for capacity and structural stability, especially at high currents. Herein, in this work, Na4FeV1/3Ti2/3(PO4)3 (NFVT) has achieved highly reactive of multiple electron transfer (Ti2+/3+, Fe2+/3+, and V3+/4+/5+) by utilizing the redox reaction with quasi‐monophase behavior, and it can reserve great capacity retention after 3,000 cycles. More competitively, its boosting kinetics makes the fast‐charging characteristic, just requiring only 3.63 min to reach 80% state of charge at 2 C. The rapid ion/electron transport dynamics can achieve the decay of only 0.043% per cycle by unlocking the quasi‐monophase behavior in the framework of NFVT full cells. The present study provides a fresh perspective on designing cathode materials with fast‐charging capabilities for sodium‐ion batteries.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3