Unraveling Polymer–Ion Interactions in Electrochromic Polymers for their Implementation in Organic Electrochemical Synaptic Devices

Author:

Roh Heejung1,Yue Shuwen2,Hu Hang3,Chen Ke3,Kulik Heather J.24,Gumyusenge Aristide1ORCID

Affiliation:

1. Massachusetts Institute of Technology Department of Materials Science & Engineering 77 Massachusetts Ave Cambridge MA 02139 USA

2. Massachusetts Institute of Technology Department of Chemical Engineering 77 Massachusetts Ave Cambridge MA 02139 USA

3. Purdue University Department of Chemistry West Lafayette IN 47907 USA

4. Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts Ave Cambridge MA 02139 USA

Abstract

AbstractOwing to low‐power, fast and highly adaptive operability, as well as scalability, electrochemical random‐access memory (ECRAM) technology is one of the most promising approaches for neuromorphic computing based on artificial neural networks. Despite recent advances, practical implementation of ECRAMs remains challenging due to several limitations including high write noise, asymmetric weight updates, and insufficient dynamic ranges. Here, inspired by similarities in structural and functional requirements between electrochromic devices and ECRAMs, high‐performance, single‐transistor and neuromorphic devices based on electrochromic polymers (ECPs) are demonstrated. To effectively translate electrochromism into electrochemical ion memory in polymers, this study systematically investigates polymer–ion interactions, redox activity, mixed ionic–electronic conduction, and stability of ECPs both experimentally and computationally using select electrolytes. The best‐performing ECP‐electrolyte combination is then implemented into an ECRAM device to further explore synaptic plasticity behaviors. The resulting ECRAM exhibits high linearity and symmetric conductance modulation, high dynamic range (≈1 mS or ≈6x), and high training accuracy (>84% within five training cycles on a standard image recognition dataset), comparable to existing state‐of‐the‐art ECRAMs. This study offers a promising approach to discover and design novel polymer materials for organic ECRAMs and demonstrates potential applications, taking advantage of mature knowledge basis on electrochromic materials and devices.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3