Affiliation:
1. School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 China
2. Institute of Theoretical and Applied Physics Soochow University Suzhou 215006 China
3. College of Chemistry Chemical Engineering & Materials Science Soochow University Suzhou 215006 China
Abstract
AbstractSelf‐trapped exciton (STE) induced broad‐band emission (BE) has sparked considerable interest due to its potential applications in white‐light emitters and optoelectronics. This phenomenon is widely observed in organic–inorganic hybrid perovskites with soft lattice structures, and its physical origin is still under debate. Herein, strong sub‐bandgap STE emission with a large Stokes shift and a photoluminescence quantum yield of up to 9.2% in van der Waals (vdW) layered In4/3P2S6 is reported. Combining comprehensive optical characterizations and theoretical calculations, this concludes that defect‐assisted extrinsic STE is responsible for the BE. The excitonic state can be further localized by hydrostatic pressure, resulting in a threefold PL intensity enhancement. In addition, angle‐resolved polarized Raman demonstrates the anisotropic lattice dynamics in IPS, which may underpin the highly linear anisotropy of the STE emission. This work clarifies the defect, STE, and anisotropy coupling effect in vdW crystal, and provides innovative avenues to modulate the STE luminescence.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Suzhou Municipal Science and Technology Bureau
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献