Tunable Anisotropic Extrinsic Self‐Trapped Exciton Emission in Van Der Waals Layered In4/3P2S6

Author:

Wang Shun1ORCID,Zhou Ju12,Zhou Zhou1,Hu Yiqi1,Li Qiankun1,Xue Jinshuo1,Feng Zhijian1,Yan Qingyu1,Luo Zhongshen1,Feng Runcang1,Weng Yuyan1,Yao Jianlin3,Ju Sheng12,Fang Liang1,You Lu1ORCID

Affiliation:

1. School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 China

2. Institute of Theoretical and Applied Physics Soochow University Suzhou 215006 China

3. College of Chemistry Chemical Engineering & Materials Science Soochow University Suzhou 215006 China

Abstract

AbstractSelf‐trapped exciton (STE) induced broad‐band emission (BE) has sparked considerable interest due to its potential applications in white‐light emitters and optoelectronics. This phenomenon is widely observed in organic–inorganic hybrid perovskites with soft lattice structures, and its physical origin is still under debate. Herein, strong sub‐bandgap STE emission with a large Stokes shift and a photoluminescence quantum yield of up to 9.2% in van der Waals (vdW) layered In4/3P2S6 is reported. Combining comprehensive optical characterizations and theoretical calculations, this concludes that defect‐assisted extrinsic STE is responsible for the BE. The excitonic state can be further localized by hydrostatic pressure, resulting in a threefold PL intensity enhancement. In addition, angle‐resolved polarized Raman demonstrates the anisotropic lattice dynamics in IPS, which may underpin the highly linear anisotropy of the STE emission. This work clarifies the defect, STE, and anisotropy coupling effect in vdW crystal, and provides innovative avenues to modulate the STE luminescence.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Suzhou Municipal Science and Technology Bureau

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3