Elucidating the Role of Ligand Engineering on Local and Macroscopic Charge‐Carrier Transport in NaBiS2 Nanocrystal Thin Films

Author:

Huang Yi‐Teng12ORCID,Schleuning Markus34ORCID,Hempel Hannes5ORCID,Zhang Youcheng2,Rusu Marin5ORCID,Unold Thomas5ORCID,Musiienko Artem5ORCID,Karalis Orestis5,Jung Nora5,Zelewski Szymon J.26ORCID,Britton Andrew J.7,Ngoh Natalie8,Song Weixin9,Hirst Louise C.210,Sirringhaus Henning2,Stranks Samuel D.211,Rao Akshay2ORCID,Levine Igal512ORCID,Hoye Robert L. Z.1ORCID

Affiliation:

1. Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK

2. Cavendish Laboratory University of Cambridge JJ Thomson Ave Cambridge CB3 0HE UK

3. Institut für Chemie Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany

4. Chemical Energy Division Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH, Hahn‐Meitner‐Platz 1 14109 Berlin Germany

5. Solar Energy Division Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 14109 Berlin Germany

6. Department of Experimental Physics Faculty of Fundamental Problems of Technology Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50–370 Poland

7. School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK

8. Department of Materials Imperial College London Exhibition Road London SW7 2AZ UK

9. Department of Materials University of Oxford Oxford OX2 6NN UK

10. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

11. Department of Chemical Engineering & Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK

12. Institute of Chemistry The Hebrew University Jerusalem 91904 Israel

Abstract

AbstractTernary chalcogenides have emerged as potential candidates for ultrathin photovoltaics, and NaBiS2 nanocrystals (NCs) have gained appeal because of their months‐long phase‐stability in air, high absorption coefficients >105 cm−1, and a pseudo‐direct bandgap of 1.4 eV. However, previous investigations into NaBiS2 NCs used long‐chain organic ligands separating individual NCs during synthesis, which severely limits macroscopic charge‐carrier transport. In this work, these long‐chain ligands are exchanged for short iodide‐based ligands, allowing to understand the macroscopic charge‐carrier transport properties of NaBiS2 and evaluate its photovoltaic potential in more depth. It is found that ligand exchange results in simultaneous improvements in intra‐NC (microscopic) and inter‐NC (macroscopic) mobilities, while charge‐carrier localization still takes place, which places a fundamental limit on the transport lengths achievable. Despite this limitation, the high absorption coefficients enable ultrathin (55 nm thick) solar absorbers to be used in photovoltaic devices, which have peak external quantum efficiencies > 50%. In addition, temperature‐dependent transient current measurements uncover a small activation energy barrier of 88 meV for ion migration, which accounts for the strongly hysteretic behavior of NaBiS2 photovoltaic devices. This work not only reveals how the charge‐carrier transport properties of NaBiS2 NCs over several length and time scales are influenced by ligand engineering, but also unveils the facile ionic transport in this material, which limits the potential of NaBiS2 in photovoltaics. On the other hand, the discovery shows that there are opportunities to use this material in memristors, electrolytes, and other applications requiring ionic conduction.

Funder

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

AiF Projekt

Institute of Materials Research and Engineering

Narodowa Agencja Wymiany Akademickiej

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3