Charging d‐Orbital Electron of ReS2+x Cocatalyst Enables Splendid Alkaline Photocatalytic H2 Evolution

Author:

Zhong Wei12,Xu Jiachao2,Zhang Xidong1,Zhang Jianjun1,Wang Xuefei2,Yu Huogen12ORCID

Affiliation:

1. Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China

2. State Key Laboratory of Silicate Materials for Architectures and School of Chemistry Chemical Engineering and Life Sciences Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China

Abstract

AbstractRhenium disulfide (ReS2) holds expansive perspective in photocatalytic water‐splitting field, but its H2‐production rate is severely impeded by the strong hydroxyl (OHad) adsorption on catalytic Re atoms. Herein, an ingenious strategy about charging d‐orbital electrons of ReS2+x cocatalyst by integrating metallic Au is explicitly clarified to effectively accelerate OHad desorption for promoting alkaline photocatalytic H2‐evolution activity. To this end, core‐shell Au@ReS2+x nanostructures as H2‐production cocatalysts are skillfully fabricated onto TiO2 by a directional assembly pathway. Experimental and theoretical data validate an free‐electron transfer from metallic Au core to S‐rich ReS2+x shell, thus essentially charging electrons to the d‐orbital of Re atoms to construct active Re(4‐δ)+ sites. The charged d‐orbital electron state of Re(4‐δ)+ atoms raises antibonding occupancy of the Re(4‐δ)+OHad bonds, thereby accelerating OHad desorption and endowing core‐shell Au@ReS2+x cocatalysts an efficient H2 production from alkaline water splitting. Moreover, the core‐shell Au@ReS2+x cocatalysts can effectively capture photogenerated electrons from TiO2 as unveiled by operando Kelvin probe force microscopy. Consequently, the optimized TiO2/Au@ReS2+x photocatalyst achieves an exceptional H2‐production rate of 6013.45 µmol h−1 g−1 with releasing visual H2 bubbles in alkaline media. This research furnishes original insights for charging orbital electrons to optimize the adsorption strength between intermediates and catalytic atoms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3