Multiscale Porous Architecture Consisting of Graphene Aerogels and Metastructures Enabling Robust Thermal and Mechanical Functionalities of Phase Change Materials

Author:

Lee Joohyoung1,Han Hyesu1,Noh Dowon1,Lee Jeongwoo1,Lim Dahyun Daniel2,Park Jinwoo3,Gu Grace X.2,Choi Wonjoon1ORCID

Affiliation:

1. School of Mechanical Engineering Korea University Seoul 02841 Republic of Korea

2. Department of Mechanical Engineering University of California Berkeley Berkeley CA 94720 USA

3. Agency for Defense Development Yuseong P. O. Box 35 Daejeon 34186 Republic of Korea

Abstract

AbstractPassive thermal energy storage systems using phase change materials (PCMs) are promising for resolving temporal‐spatial overheating issues from small‐ to large‐scale platforms, yet their poor shape stability due to solid–liquid transition incurs PCM leakage and weak resistance against mechanical disturbance, limiting practical applications. While foam‐stable templates for PCMs have shown complement, they reveal massive leakage and collapse of liquefied PCMs under external loads or impacts. Herein, a multiscale porous architecture consisting of graphene aerogels (GAs) and meta structures enabling robust thermal‐mechanical functionalities of PCMs (3D‐MPGA) toward sustainable phase change thermal energy storage composites is reported. 3D‐printed mechanical metamaterials employing octet‐truss cells provide supportive strength and directionally‐assisted leakage reduction, while GAs serve as porous templates with surface‐interfacial contacts, thereby fixing paraffin wax as PCM inside their nano/micropores. The 3D‐MPGA shows intrinsic thermal characteristics of bulk PCMs, and improved thermal‐mechanical‐chemical stability, confirmed by long‐term heating‐cooling cycle tests over 10 h. Moreover, it exhibits highly reinforced strength (200–5000%) within a low density across ambient and melting temperatures, and maintains original shapes in the liquefied PCMs without severe leakage, against external loads. This work inspires rational strategies for advancing robust thermal‐mechanical functionalities for PCM‐based thermal energy storage systems.

Funder

Alfred P. Sloan Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3