One‐Hour Ambient‐Pressure‐Dried, Scalable, Stretchable MXene/Polyurea Aerogel Enables Synergistic Defense Against High‐Frequency Mechanical Shock and Electromagnetic Waves

Author:

Zheng Sinan1,Xu Wenlong2,Liu Jiurong1,Pan Fei3,Zhao Shanyu4,Wang Yadi1,Zeng Zhihui1ORCID,Wu Na5ORCID

Affiliation:

1. Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education) School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China

2. Institute for Advanced Technology Shandong University Jinan 250061 P. R. China

3. Department of Chemistry University of Basel Basel CH‐4058 Switzerland

4. Laboratory for Building Energy Materials and Components Swiss Federal Laboratories for Materials Science and Technology Empa Dübendorf Zurich CH‐8600 Switzerland

5. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

Abstract

AbstractThe rapid, energy‐efficient, scalable preparation of high‐strength, flexible, multifunctional nanostructured aerogels is highly desired yet challenging. Here, an ambient‐pressure‐dried (APD) strategy is developed involving self‐foaming, dip‐coating, and graphene oxide (GO)‐assisted multiple cross‐linking treatments for the prompt, large‐area preparation of polyurea/transition metal carbides/nitrides (MXenes) aerogels. The APD MXene‐based aerogels showcase low density, remarkable mechanical strength, and ultraflexiblity involving stretchability, good conductivity, hydrophobicity, and high resistance to various solvents. Synergies of robust, elastic cell walls and porous structure contribute to high‐efficiency absorption of high‐frequency, high‐speed mechanical shock waves for the aerogels, significantly transcendinging the biomasses, plastics, elastomers, ceramics, and metals. In addition to the excellent microwave shielding performance of over 40 dB in ultrabroadband frequencies of 4–40 GHz, the oxidation stability is elevated for APD MXene aerogels, consequently yielding applicability in harsh conditions. Furthermore, the superior light absorption capability of aerogels leads to the efficient photothermal conversion, therapy, antibacterial, desalination, water purification, deicing, and thick oil absorption. This work provides a facile, time‐ and energy‐efficient, scalable APD methodology for manufacturing large‐area, high‐strength, ultraflexible, multifunctional MXene‐based aerogels, enlighting a novel synergistic defense against mechanical shock and electromagnetic waves, and promoting them as a prospective candidate in aerospace, device protection, and next‐generation electronics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3