Affiliation:
1. Innovation Center for Textile Science and Technology College of Textiles Donghua University Shanghai 201620 China
2. College of Textiles Changzhou Vocational Institute of Textile and Garment Changzhou Jiangsu 213164 China
3. Department of Textile, Garment and Design Changshu Institute of Technology Suzhou 215500 China
4. School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
Abstract
AbstractAs a distributed environmental energy harvesting device, triboelectric nanogenerators (TENGs) inevitably encounter different and extreme application scenarios, such as environment with high temperature, high humidity, corrosion condition, frequent mechanical stimulus, and physical damages, which resulting in triboelectric performance degradation either by damaging device structure or reducing surface potential, and accelerating dissipation of surface bound charge. Therefore, tremendous efforts are dedicated to improving the TENG performance, enabling devices are competent in sustaining various challenging conditions. This review summarizes and highlights the latest research progress of strategy to achieve TENGs with high environmental adaptivity in three representative application fields of interfacial devices, wearable devices and implantable devices, aiming to gain insights in terms of material selection, structural design, preparation technology, working mode and integration strategy. The future development of the TENG would transform from static to dynamic device that possesses multifunction, high stability, autonomous response and actuation ability to adapt complex application environment. It is hoped that this review article could steer the development of environment‐adaptive TENGs to a higher level.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献