Affiliation:
1. Clarendon Laboratory, Department of Physics University of Oxford Parks Road OX1 3PU Oxford UK
2. School of Physics and Astronomy, Faculty of Engineering and Physical Sciences University of Southampton University Road SO17 1BJ Southampton UK
3. TUM Institute for Advanced Study Technische Universität München Lichtenbergstr. 2a 85748 Garching bei München Germany
Abstract
AbstractMetal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high‐efficiency photovoltaic applications. Low‐dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge‐carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature‐dependent measurements of free charge‐carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in‐plane mobilities. Enhanced charge‐phonon coupling is shown to reduce charge‐carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge‐carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge‐carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature‐dependent interplay of exciton and free‐carrier populations in 2D MHPs. Furthermore, such sustained free charge‐carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources.
Funder
Engineering and Physical Sciences Research Council
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献