Nanoclay Reinforced Polymer Composite Dielectrics for Ultra‐Balanced Electrostatic Energy Storage

Author:

Liang Xiaozheng1,Li Quan234,Ren Yangjun234,Xie Weimin1,Tang Aidong234,Yang Huaming1234ORCID

Affiliation:

1. Hunan Key Laboratory of Mineral Materials and Application School of Minerals Processing and Bioengineering Central South University Changsha 410083 China

2. Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of Geosciences Wuhan 430074 China

3. Laboratory of Advanced Mineral Materials China University of Geosciences Wuhan 430074 China

4. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China

Abstract

AbstractThe vast energy storage potential of polymer composite dielectrics in high pulse power sources stands in stark contrast to the unbalanced improvements in discharge energy density (Ud), charge–discharge efficiency (η), and dielectric strength (Eb) as reported currently. Herein, a multistage coupled interface engineering design is proposed: a novel gradient alternating dielectric buffer layer (G‐A‐DBL) is constructed, which consists of inorganic low‐k nanoclay aluminosilicate layer and high‐k ferroelectric layer assembled in a highly oriented alternation as a basic unit and gradient distribution in polymer matrix. This design achieves electric field confinement from the nanoscale to the macroscopic level and achieves an ultra‐balanced enhancement effect, resulting in a Ud of 28.5 J cm−3, an η of 80%, and an Eb of 676 kV mm−1. The universal charge retention ability of charge traps from aluminosilicate heterogeneous skeletons is demonstrated by combining density functional theory calculations and scanning probe measurements. The G‐A‐DBL design integrates traditional charge trapping, heterostructure formation, and gradient modulation, effectively suppressing the entire process of carrier excitation, transport, and before capture. This work advances the basic understanding of charge confinement within inorganic interface charge traps, demonstrating the most well‐balanced enhancement effect and potential for broad application across dielectric polymer nanocomposites.

Funder

National Science Fund for Distinguished Young Scholars

Fundamental Research Funds for the Central Universities of Beijing University of Chemical Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3