Unveiling the Nanoarchitectonics of Interfacial Electronic Coupling in Atomically Thin 2D WO3/WSe2 Heterostructure for Sodium‐Ion Storage in Aqueous System

Author:

Shinde Pragati A.1ORCID,Mahamiya Vikram2,Safarkhani Moein3,Chodankar Nilesh R.4,Ishii Masaki1,Ma Renzhi1,Ghaferi Amal Al5,Shrestha Lok Kumar16,Ariga Katsuhiko17

Affiliation:

1. Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba 305‐0044 Japan

2. The Abdus Salam International Centre for Theoretical Physics (ICTP) Trieste I‐34151 Italy

3. NanoBio High‐Tech Materials Research Center Department of Biological Sciences and Bioengineering Inha University Incheon 22212 Republic of Korea

4. Mechanical Engineering Department Khalifa University of Science and Technology Abu Dhabi 127788 United Arab Emirates

5. Rabdan Academy Abu Dhabi 114646 United Arab Emirates

6. Department of Materials Science Institute of Pure and Applied Sciences University of Tsukuba 1‐1‐1 Tsukuba 305‐8573 Japan

7. Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan

Abstract

AbstractAqueous sodium (Na+) ion storage systems face challenges due to sluggish adsorption and diffusion of Na+ ions with larger size, hindering their potential for stationary applications. This issue is addressed by evolving the interfacial electronic coupling in atomically thin 2D WO3/WSe2 heterostructure for efficient Na+ ion storage. Density functional theory (DFT) analysis elucidates the superior charge storage capability for the WO3/WSe2 heterostructure facilitated by the charge transfer from the WO3 – WSe2 (002). The charge transfer from the W‐5d and O‐2p orbitals of WO3 to the valence W‐5d and Se‐4p orbitals of the WSe2 (002) surface boosts the electronic conductivity. As a result, the WO3/WSe2 electrode demonstrates exceptional Na+ ion storage, with a specific capacitance of 378.1 F g−1 at 1 A g−1, excellent rate capability, and long‐lasting cycling durability. The full cell comprising WO3/WSe2 as the negative and MnSe/MnSe2 as the positive electrode achieved a peak energy density of 82.1 Wh kg−1 at a power density of 1873.5 W kg−1, along with high rate capability and long‐cycle durability. Insights gained from this study pave the technique for the rational design and optimization of the interfacial electronic features in 2D heterostructures for next‐generation energy storage devices with enhanced performance and stability.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3