La0.6Sr0.4CoO3−δ Films Under Deoxygenation: Magnetic And Electronic Transitions Are Apart from The Structural Phase Transition

Author:

He Suqin123ORCID,Petracic Oleg2ORCID,Lauter Valeria4ORCID,Cao Lei25ORCID,Zhou Yunxia5ORCID,Weber Moritz Lukas13ORCID,Schubert Jürgen6ORCID,Concepción Omar6ORCID,Dittmann Regina13ORCID,Waser Rainer137ORCID,Brückel Thomas23ORCID,Gunkel Felix13

Affiliation:

1. Peter Grünberg Institute (PGI‐7) Forschungszentrum Jülich GmbH 52425 Jülich Germany

2. Jülich Centre for Neutron Science (JCNS‐2) and Peter Grünberg Institut (PGI‐4) JARA‐FIT Forschungszentrum Jülich GmbH 52425 Jülich Germany

3. Jülich‐Aachen Research Alliance (JARA‐FIT) RWTH Aachen University 52056 Aachen Germany

4. Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA

5. Institute of Ion Beam Physics and Materials Research Helmholtz‐Zentrum Dresden‐Rossendorf 01328 Dresden Germany

6. Semiconductor Nanoelectronics (PGI‐9) Forschungszentrum Jülich GmbH 52425 Jülich Germany

7. Institut für Werkstoffe der Elektrotechnik 2 RWTH Aachen University 52056 Aachen Germany

Abstract

AbstractTopotactic phase transitions induced by changes in the oxygen vacancy concentration can largely alter the physical properties of complex oxides, including electronic and magnetic phases, while maintaining the structural integrity of the crystal lattice. An oxygen‐vacancy‐induced topotactic phase transition from perovskite (PV) to brownmillerite (BM) is achieved in epitaxial La0.6Sr0.4CoO3−δ (LSCO) thin films. Two novel intermediate states with different oxygen content are identified by X‐ray diffraction, which involves a single‐phase reduced PV state and a mixed state of co‐existing PV and BM. The combination of depth‐sensitive polarized neutron reflectometry (PNR) and Rutherford backscattering (RBS) allows a quantitative determination of magnetization and the mean oxygen content in all states, revealing a continuous transition from La0.6Sr0.4CoO2.97 to La0.6Sr0.4CoO2.5. BM formation is observed for an LSCO layer with an oxygen content of 2.67, while the magnetic and electronic transition already occurs for a layer with a higher oxygen content of 2.77 (and above) and in the absence of a BM signature. These results demonstrate that the physics of electronic metal‐to‐insulator transition (MIT), magnetic ferromagnet‐to‐non‐ferromagnet transition (FM‐to‐non‐FM), and structural PV‐to‐BM phase transition should be considered within the framework of separate but interrelated processes.

Funder

Forschungszentrum Jülich

Oak Ridge National Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3