Graphene‐Enhanced Single Ion Detectors for Deterministic Near‐Surface Dopant Implantation in Diamond

Author:

Collins Nicholas F. L.1ORCID,Jakob Alexander M.1ORCID,Robson Simon G.1ORCID,Lim Shao Qi1ORCID,Räcke Paul23ORCID,Johnson Brett C.4ORCID,Liu Boqing5ORCID,Lu Yuerui56ORCID,Spemann Daniel2ORCID,McCallum Jeffrey C.1ORCID,Jamieson David N.1ORCID

Affiliation:

1. Center for Quantum Computation and Communication Technology School of Physics University of Melbourne Parkville Victoria 3010 Australia

2. Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 D‐04318 Leipzig Germany

3. Applied Quantum Systems Felix Bloch Institute for Solid State Physics Universität Leipzig Linnéstraße 5 04103 Leipzig Germany

4. School of Science RMIT University Melbourne Victoria 3001 Australia

5. School of Engineering College of Engineering Computing and Cybernetics, ANU Canberra ACT 2601 Australia

6. ARC Centre of Excellence in Quantum Computation and Communication Technology ANU node Canberra ACT 2601 Australia

Abstract

AbstractDiamond color centers with applications to single photon sources, quantum computation, and magnetic field sensing down to the nanoscale have been investigated using ensembles of near‐surface implanted atoms. Deterministic ion implantation for ions stopping between 30 and 130 nm deep is demonstrated by configuring an electronic‐grade diamond substrate with a biased surface graphene electrode connected to charge sensitive electronics. The thin graphene electrode has a negligible surface dead layer, so implantation events are signaled from the drift of electron–hole pairs induced by the dissipation of ion kinetic energy in the substrate. Ion beam induced charge maps from a scanned 1 MeV He microbeam show the graphene electrode is highly effective with a charge collection efficiency up to 86% compared to an O‐terminated diamond surface of 30%. For lower energy ions, applicable to near surface implantation, single ion detection confidence is >99(1)% for 19.5 keV H and 85(2)% for 24 keV N ions to allow maps of device surface features by employing a focused ion beam microscope or an atomic force microscope cantilever incorporating a nanostencil beam collimator. In the near‐term, this system can be used to investigate the annealing dynamics for the conversion of single implanted ions into diamond color centers.

Funder

Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council

Army Research Office

International Atomic Energy Agency

Sächsisches Staatsministerium für Wissenschaft und Kunst

Bundesministerium für Bildung und Forschung

Leibniz-Gemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3