Revealing Intrinsic Relations Between Cu Scales and Radical/Nonradical Oxidations to Regulate Nucleophilic/Electrophilic Catalysis

Author:

Wan Zhonghao1,Cao Yang1,Xu Zibo1,Duan Xiaoguang2,Xu Shuguang1,Hou Deyi3,Wang Shaobin2,Tsang Daniel C.W.14ORCID

Affiliation:

1. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China

2. School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia

3. School of Environment Tsinghua University Beijing 100084 China

4. State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China

Abstract

AbstractCopper/carbon catalysts under different electron‐transfer regimes can evolve both radical and nonradical pathways in peroxide activation. However, the underlying trigger to manipulate the transition in between is unclear. Herein, it is revealed that Cu species in a state of sub‐nanometre particles (SNPs, < 1 nm) exhibits an electrophilic nature, which is opposite to its nucleophilic nature at a larger scale (nanoclusters, > 1 nm). This switch between nucleophile/electrophile nature leads to distinct catalytic mechanisms in activating peroxymonosulfate, i.e., nonradical 1O2 surface‐bound upon Cu SNPs and unleashed radical OH induced by Cu nanoclusters. The vacancy defects of biomass‐derived carbon can stabilize Cu SNPs via a CuVC configuration, circumventing the contemporary difficulties in coordinating/preserving MetalNC bonding. Depth profiling, chemical probes, and charge density difference modeling support the regulable electroactive nature over modulated Cu scales. This featured system is applied for tetracycline degradation, and Cu SNPs demonstrates the highest efficacy with their better peroxymonosulfate confinement in nonradical regime (88.9% removal, nucleophilic activation). Comparatively, severe Cu leaching caused by radical erosion (44.8% removal, electron‐donation) is undesirable. Overall, a regulable heterogeneous catalysis is unraveled over carbon‐supported Cu sites through scaling modulation and defect engineering. This study illuminates a promising path for customizing biomass‐derived Cu‐based catalysts to achieve versatile catalysis.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3