Unveiling the Glucose Oxidase‐Like and Catalase‐Like Activities of Highly Conjugated 3,4,9,10‐Perylenetetracarboxylic Dianhydride for Boosting Biofuel Cells

Author:

Gu Chengcheng1,Zhang Lei1,Hou Ting1,Zhu Dangqiang1,Li Feng1ORCID,Gai Panpan1

Affiliation:

1. College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 China

Abstract

AbstractCarbon‐based nanozymes have received considerable attention due to their superior biosafety, enhanced tolerance to extreme conditions, and ease of chemical modification. However, due to limited material diversity and unconfirmed molecular structure, carbon‐based nanozymes face challenges such as relatively low enzyme activity and unclear catalytic mechanisms. The development of materials with well‐defined structures and controllable properties is crucial for promoting the rapid progress of nanozymes. Herein, 3,4,9,10‐perylenetetracarboxylic dianhydride (PD) exhibits both glucose oxidase (GOx)‐like and catalase (CAT)‐like activities, which may be due to the fact that PD possesses the features of highly conjugated structure and high electron mobility. In addition, it is demonstrated that the enzymatic activity is related to the degree of PD aggregation via the characterization of its morphology and size. Based on the excellent GOx‐like and CAT‐like activities of PD, a self‐cascade catalytic system is constructed for application in biofuel cells (BFCs). It is worth mentioning that such BFC still maintains high stability after working for 30 days. Therefore, this study expands the enzyme‐like systems and discovers that nanomaterials with highly conjugated structures and high electron mobility can mimic enzymes. Additionally, the multi‐enzyme activities are utilized to construct self‐cascade systems, which can effectively improve the performance of BFCs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Qingdao Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3