Interfacial Connections between Organic Perovskite/n+ Silicon/Catalyst that Allow Integration of Solar Cell and Catalyst for Hydrogen Evolution from Water

Author:

Gu Hengfei1,Zhang Fei2,Hwang Shinjae1,Laursen Anders B.1,Liu Xin3,Park So Yeon2,Yang Mengjin2,Bramante Rosemary C.2,Hijazi Hussein4,Kasaei Leila4,Feldman Leonard C.45,Yeh Yao‐Wen4,Batson Philip E.4,Larson Bryon W.2,Li Mengjun1,Li Yifei1,Wyatt Keenan2,Young James L.2,Teeluck Krishani1,Zhu Kai2,Garfunkel Eric1,Dismukes G. Charles16ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey Piscataway NJ 08854 USA

2. National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA

3. Department of Biomedical Engineering, Rutgers The State University of New Jersey Piscataway NJ 08854 USA

4. Department of Physics and Astronomy, Rutgers The State University of New Jersey Piscataway NJ 08854 USA

5. Department of Materials Science & Engineering, Rutgers The State University of New Jersey Piscataway NJ 08854 USA

6. Waksman Institute, Rutgers The State University of New Jersey Piscataway NJ 08854 USA

Abstract

AbstractThe rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin‐film semiconductors has triggered interest in their use for direct solar‐driven water splitting to produce hydrogen. However, application of these low‐cost, electronic‐structure‐tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic‐catalyst‐electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high‐temperature annealing of the catalyst/TiO2‐protected‐n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1‐xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro‐OMeTAD‐hole‐transport‐layer (HTL)‐based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1‐sun illumination. While this thin‐film design creates stable interfaces, the intrinsic photo‐ and electro‐degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3