Affiliation:
1. Fert Beijing Institute MIIT Key Laboratory of Spintronics School of Integrated Circuit Science and Engineering Beihang University Beijing 100191 China
2. Department of Electrical and Computer Engineering National University of Singapore Singapore 117576 Singapore
3. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education) School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
Abstract
AbstractThe efficient manipulation of magnetization using spin‐orbit torques (SOTs) generated by heavy metals and topological insulators has attracted significant attention. However, the symmetry of these conventional materials makes it challenging to achieve deterministic switching of perpendicular magnetization by currents, which prevents the practical application of SOT‐based spintronic devices such as magnetic memories and logics. Here, a composition gradient in a TaxTi1‐x alloy is introduced and the field‐free magnetization switching in TaxTi1‐x/CoFeB heterostructures with controllable SOT efficiencies is realized. Additionally, by engineering the gradient with a tilting angle relative to the current injection arm of the device, highly asymmetric switching loops are achieved, which are attributed to tilted spin polarization. Based on these two switching types, namely field‐free switching and field‐assisted asymmetric switching, five programmable Boolean logic functions are successfully demonstrated using a single device. This work paves the way for high‐density computing‐in‐memory applications with industry compatible artificially‐designed asymmetric SOT materials.
Funder
National Natural Science Foundation of China
Beijing Nova Program
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献