Affiliation:
1. International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
2. Department of Chemistry and Chemical Biology Graduate School of Science and Technology Gunma University Kiryu 376‐8515 Japan
Abstract
AbstractIt is highly desirable to develop facile methods to improve the processability of porous materials for industrial applications. Herein, the preparation of a novel near‐infrared emitting hybrid aerogel (PCS‐CA) is reported by physically blending a porous material with chitosan. The applied porous material (PCS‐CZ‐O‐DCM) is obtained from a near‐infrared emission semiconductor compound (CZ‐O‐DCM) and octavinylsilsesquioxane (OVS). PCS‐CZ‐O‐DCM can detect tetracycline hydrochloride selectively and rapidly in various solution with an extremely low detection limit of 0.29 µm for fluorescence quenching. It also exhibits an outstanding sunlight‐driven photodegradation activity for antibiotics even in the absence of additional oxidation agents or pH control. PCS‐CA also performs better than PCS‐CZ‐O‐DCM powder. A PCS‐CA‐based glass device is further fabricated, which enables a larger amount of water purification of antibiotics by a continuous flow‐through system by light‐driven degradation. By blending with a soft polymer matrix, improved processability can be applied to insoluble porous materials. As a result, a novel functional devices can be realized which provides a new way to apply insoluble porous materials.
Funder
National Natural Science Foundation of China
Key Technology Research and Development Program of Shandong
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献