Optimizing the Electron Spin States of Na4Fe3(PO4)2P2O7 Cathodes via Mn/F Dual‐Doping for Enhanced Sodium Storage

Author:

Xi Yukun12,Wang Xiaoxue2,Wang Hui2,Wang Mingjun1,Wang Guangjin3,Peng Junqi3,Hou Ningjing2,Huang Xing2,Cao Yanyan2,Yang Zihao2,Liu Dongzhu2,Pu Xiaohua2,Cao Guiqiang2,Duan Ruixian2,Li Wenbin2,Wang Jingjing2,Zhang Kun4,Xu Kaihua4,Zhang Jiujun5,Li Xifei2ORCID

Affiliation:

1. School of Automation and Information Engineering Xi'an University of Technology Xi'an Shaanxi 710048 China

2. Key Materials & Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi 710048 China

3. Sichuan Enatrium New Energy Sci‐Tech Co. Ltd Chengdu Sichuan 610052 China

4. GEM Co., Ltd., Shenzhen Guangdong 518101 China

5. Institute for New Energy Materials and Engineering College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China

Abstract

AbstractA NASICON‐type Mn/F dual‐doping Na4Fe3(PO4)2P2O7 cathode material is successfully synthesized via a spray drying method. A medium‐spin of Fe is measured by DFT calculation, X‐ray absorption near edge structure (XANES), temperature‐dependent magnetization susceptibility (M−T) measurement, and electron paramagnetic resonance (EPR) tests. It indicates that the eg orbital occupation of Fe2+ can be finely regulated, thus optimizing the bond strength between the oxidation and reduction processes. Furthermore, from UV−vis DRS and four‐point probe conductivity measurements, it can be seen that, after adjusting the electron spin states, the band gap of the material has decreased from 1.01 to 0.80 eV, and the electronic conductivity has increased from 8.5 to 24.4 µS cm−1, thereby leading to competitive electrochemical performance. The as‐optimized Na4Fe3(PO4)2P2O7 displays both excellent rate performance (121.0 and 104.9 mAh g−1 at 0.1 C and 5 C, respectively) and outstanding cycling stability (88.5% capacity retention after 1000 cycles at 1 C). The results indicate that this low‐cost Mn/F dual‐doping Na4Fe3(PO4)2P2O7 cathode can be a competitive candidate material for sodium‐ion batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3