Multifunctional Yb3Si2C2 with High‐Performance Terahertz Shielding for Future 6G Communications

Author:

Qiu Nianxiang12ORCID,Zhou Xiaobing12,Huang Qing12,Ye Jichun1,Du Shiyu2345ORCID

Affiliation:

1. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo Zhejiang 315201 P. R. China

2. Zhejiang Key Laboratory of Data‐Driven High‐Safety Energy Materials and Applications Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China

3. School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China

4. School of Computer Science China University of Petroleum (East China) Qingdao 266580 P. R. China

5. Milky‐Way Sustainable Energy Ltd Zhuhai 519000 P. R. China

Abstract

AbstractThe development of next‐generation 6G communications is anticipated to expand into extreme environments, necessitating superior terahertz (THz) electromagnetic interference (EMI) shielding materials. Herein, structural stability, electronic and optical properties of rare earth silicide carbide Yb3Si2C2 are investigated using first principles density functional calculations and semi‐classical Boltzmann transport theory. The calculation results show Yb3Si2C2 is determined to be experimentally synthesized with high temperature stability with a certain fluctuating C2 pair orientation. In addition, Yb3Si2C2 is identified as a soft, tough, and damage‐resistant ceramic with low shear deformation resistance and easy cleavage, ensuring its durability in irradiation environments. Due to the layered structure and excellent electrical conductivity, Yb3Si2C2 demonstrates high reflectivity and low transmittance for terahertz electromagnetic waves, along with 62% solar absorptivity and 33% IR emissivity. Remarkably, the total shielding effectiveness of Yb3Si2C2 with thicknesses of 5 µm and above follows the widely‐used Simon's formula. The average total shielding effectiveness of 5 µm‐thick and 10 µm‐thick Yb3Si2C2 across the entire THz region reaches 63 and 110 dB, respectively, which turns out to be the top compared to the results reported. Therefore, the multifunctional intrinsic properties of Yb3Si2C2 materials hold great promise for miniaturized, high‐performance terahertz EMI shielding, even in extreme environments.

Funder

Natural Science Foundation of Ningbo Municipality

National Major Science and Technology Projects of China

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3