Device Design and Advanced Computed Tomography of 3D Printed Radiopaque Composite Scaffolds and Meniscus

Author:

Delemeester Mitchell12ORCID,Pawelec Kendell M.1ORCID,Hix Jeremy M.L.13ORCID,Siegenthaler James R.45ORCID,Lissy Micah6ORCID,Douek Philippe C.78ORCID,Houmeau Angèle7,Si‐Mohamed Salim A.78ORCID,Shapiro Erik M.123910ORCID

Affiliation:

1. Department of Radiology Michigan State University East Lansing MI 48824 USA

2. Department of Chemical Eng & Materials Science Michigan State University East Lansing MI 48824 USA

3. Institute for Quantitative Health Science & Engineering Michigan State University East Lansing MI 48824 USA

4. Fraunhofer USA Center Midwest Diamonds and Coatings Technology Division East Lansing MI 48824 USA

5. Department of Electrical and Computer Engineering Michigan State University East Lansing MI 48824 USA

6. Department of Orthopedics Michigan State University East Lansing MI 48824 USA

7. University of Lyon, INSA‐Lyon Université Claude Bernard Lyon 1 UJM‐Saint Etienne CNRS Inserm, CREATIS UMR 5220, U1206, F‐69621, 7 Avenue Jean Capelle O Villeurbanne 69100 France

8. Department of Radiology Louis Pradel Hospital, Hospices Civils de Lyon 59 Boulevard Pinel Bron 69500 France

9. Department of Physiology Michigan State University East Lansing MI 48824 USA

10. Department of Biomedical Engineering Michigan State University East Lansing MI 48824 USA

Abstract

Abstract3D‐printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque bismuth oxide (Bi2O3) doped polycaprolactone (PCL) composite is developed and implemented to enable the use of diagnostic X‐ray technologies, especially spectral photon counting X‐ray computed tomography (SPCCT), for comprehensive tissue engineering scaffold (TES) monitoring. PCL filament with homogeneous Bi2O3 nanoparticle (NP) dispersion (0.8 to 11.7 wt%) is first fabricated. TES are then 3D printed with the composite filament, optimizing printing parameters for small features and severely overhung geometries. These composite TES are characterized via micro‐computed tomography (µCT), tensile testing, and a cytocompatibility study, with 2 wt% Bi2O3 NPs providing improved tensile properties, equivalent cytocompatibility to neat PCL, and excellent radiographic distinguishability. Radiographic performance is validated in situ by imaging 4 and 7 wt% Bi2O3 doped PCL TES in a mouse model with µCT, showing excellent agreement with in vitro measurements. Subsequently, CT image‐derived swine menisci are 3D printed with composite filament and re‐implanted in corresponding swine legs ex vivo. Re‐imaging the swine legs via clinical CT allows facile identification of device location and alignment. Finally, the emergent technology of SPCCT unambiguously distinguishes the implanted meniscus in situ via color K‐edge imaging.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Institutes of Health

Publisher

Wiley

Reference49 articles.

1. Engineered biomaterials for in situ tissue regeneration

2. Actifithttps://orteq.com(accessed: February 2024).

3. Medtronic Mesh Products https://www.medtronic.com/covidien/en‐us/products/hernia‐repair/mesh‐products.html(accessed: February 2024).

4. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone–soft tissue engineering applications: in-vitro and in-vivo evaluation

5. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3