Super‐Stretchable, Anti‐Freezing, Anti‐Drying Organogel Ionic Conductor for Multi‐Mode Flexible Electronics

Author:

Long Yong1,Jiang Bing2,Huang Tianci2,Liu Yuxiu13,Niu Jianan13,Wang Zhong Lin1234,Hu Weiguo123ORCID

Affiliation:

1. CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing Beijing 101400 P. R. China

2. Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 P. R. China

3. School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China

4. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA

Abstract

AbstractDue to their intrinsic flexibility, tunable conductivity, multiple stimulus‐response, and self‐healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self‐polymerization reaction is involved, which is super stretchable, anti‐drying, and anti‐freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high‐performance triboelectric nanogenerator (TENG) is constructed (MOIC‐TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human‐machine interfaces.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3