A Simple Poly(Vinyl Sulfonate) Coating for All‐Purpose, Self‐Cleaning Applications: Molecular Packing Density–Defined Surface Superhydrophilicity

Author:

Wang Rong1,Cheng Chongling2,Wang Huiyun1,Tao Qi3,Wang Dayang1ORCID

Affiliation:

1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China

2. State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University 210096 Nanjing P. R. China

3. College of Energy and Electrical Engineering Hohai University Nanjing 211100 P. R. China

Abstract

AbstractIn this study, poly(vinyl sulfonate) (PVS)–capped surfaces are constructed on the polyelectrolyte multilayers (PEMs) of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) via electrostatic assembly. The water wetting behavior on the resulting PVS‐capped PEMs is meticulously correlated with the number of surface sulfonate groups with the aid of sum frequency generation spectroscopy and quartz crystal microbalance. It is found that when the molecular packing density of surface sulfonate groups is adjusted to be comparable to the maximal packing density of spheres in two dimensions (≈0.9), the PVS capping is able to effectively adsorb water molecules from the surrounding to form hydrogen‐bonded networks, which not only promote complete surface wetting by water in air but also diminish surface affinity to adhesion of ice, oil and wax deposited atop. As a result, the PVS‐capped PEMs are able to fulfil all the self‐cleaning functions proposed for superhydrophilic surfaces including anti‐fogging, anti‐icing, anti‐grease, anti‐smudge, anti‐graffiti, and anti‐wax. After being coated with the self‐cleaning PVS‐capped PEMs, conventional stainless steel meshes are able to perform oil‐water separation without prior water wetting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3