Affiliation:
1. Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
2. School of Mechanical Engineering and Automation Beihang University Beijing 100191 P. R. China
3. Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
Abstract
AbstractLossless and directional droplet transport is desirable in biological processes as well as in technical applications such as targeted drug therapies, bioassays, and microfluidics. Conventional methods that use surface energy and Laplace pressure gradients to achieve spontaneous droplet transport often suffer from droplet destruction and loss. Herein, an efficient strategy is reported based on a V‐shaped underwater superoleophobic rail and a V‐shaped superhydrophobic rail that delivers lossless and directional oil and water droplet transport, respectively. The V‐shaped rail not only converts the kinetic energy of the impacting droplets into planar motion but also seriously deforms the droplet to create a 3D Laplace pressure difference that directionally moves the droplet. The superoleophobic and superhydrophobic wettability of a copper rod surface is crucial for achieving lossless water and oil droplet transport, which is attributable to low adhesive forces acting on the droplets. The V‐shaped rail can also feasibly be used in droplet sensors, microchemical reactions, droplet‐based electricity generators, and water/oil separation applications, thereby significantly expanding the applications of lossless and directional droplet transport.
Funder
Higher Education Discipline Innovation Project
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献