Magnesium Optrodes for Real‐Time Optical Monitoring of Water Transport in Ultrathin Encapsulations for Bioelectronics

Author:

Mariello Massimo12ORCID,Kavungal Deepthy3,Gallagher Aidan2,Cleusix Marion Bianca2,Rouèche Mélanie N.2,Altug Hatice3,Leterrier Yves2,Lacour Stéphanie P.1

Affiliation:

1. Laboratory for Soft Bioelectronic Interfaces (LSBI) École Polytechnique Fédérale de Lausanne School of Engineering Neuro‐X Institute Geneva CH1202 Switzerland

2. Laboratory for Processing of Advanced Composites (LPAC) École Polytechnique Fédérale de Lausanne (EPFL) Institute of Materials Lausanne CH1005 Switzerland

3. Bionanophotonic Systems Laboratory (BIOS) École Polytechnique Fédérale de Lausanne Institute of Bioengineering Lausanne CH1005 Switzerland

Abstract

AbstractRecent studies investigated the hydrolysis of Magnesium (Mg) thin films, highlighting their potential use in biodegradable devices. Quantitatively monitoring the degradation rate and morphological changes of Mg through optical methods and light‐delivery devices offers an innovative, contactless technique, independent of electrical wiring. This method is particularly useful for challenging sensing applications. This study introduces a set of strategies based on Mg optrodes where hydrolysis drives the real‐time monitoring of biofluid penetration through thin‐film encapsulations for bioelectronics. This enables a straightforward assessment of their long‐term reliability, through a quantitative correlation between the water transmission rate (WTR) of the encapsulation and the Mg optical modifications. The optical response of the corroding Mg films deposited on glass substrates and multimode optical fibers tips, within the visible spectrum is characterized. Finally, it is demonstrated that nanopatterning of Mg films as plasmonic nanoantennas significantly enhances the sensitivity of the quantitative approach in the mid‐Infrared spectrum through localized plasmon effects. This method achieves a WTR detection of 6.9 × 10−3 gm−2 day−1 in phosphate buffer solution (25 °C), with a theoretical lower detection limit of ≈10−5 gm2 day−1. These findings pave the way for the development of a new class of nano‐optical water‐permeation sensors.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3