In Situ Enzyme‐Induced Self‐Assembly of Antimicrobial‐Antioxidative Peptides to Promote Wound Healing

Author:

Teng Runxin1,Yang Yuying1,Zhang Zhuo1,Yang Kexin1,Sun Min2,Li Chang2,Fan Zhen1ORCID,Du Jianzhong1234ORCID

Affiliation:

1. Department of Polymeric Materials School of Materials Science and Engineering Tongji University 4800 Caoan Road Shanghai 201804 China

2. Department of Orthopedics, Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China

3. Institute for Advanced Study Tongji University Shanghai 200092 China

4. Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine Tongji University Shanghai 200434 China

Abstract

AbstractAntimicrobial peptides (AMPs) with dual intrinsic antibacterial and antioxidative functions have emerged as promising choice to cure infected wound. However, the most widely applied approach to endow AMPs with antioxidative function is to combine with antioxidative moieties, which may affect the spatial structure and physiological stability of AMPs. Herein, a new type of AMPs with inherent desired stability, antibacterial activity, and reactive oxygen species (ROS) scavenging is developed to effectively heal the infected wound. This formulation is in situ formed at wound site by tyrosinase‐triggered oxidation and self‐assembly of lyophilized antimicrobial peptide Trp‐Arg‐Trp‐Arg‐Trp‐Tyr, providing enhanced stability and a fourfold and sevenfold increasement in antibacterial efficiency against E. coli and S. aureus compared to peptide monomers. The antimicrobial peptide is first oxidized and then assembled into nanoparticles. The melanin‐like structure has been demonstrated with efficient antioxidant properties, and the experimental data show that peptide nanoparticles to scavenge superoxide radicals, hydroxyl radicals, and H2O2. In vivo experiments confirmed that peptide nanoparticles effectively heal infected wounds and obviously reduce ROS. Overall, the research provides a new approach to formulating antimicrobial peptides to treat wound with high healing efficiency.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3