Single Phase Trimetallic Spinel CoCrxRh2‐xO4 Nanofibers for Highly Efficient Oxygen Evolution Reaction under Freshwater Mimicking Seawater Conditions

Author:

Jin Dasol1,Woo Hyerim1,Prabhakaran Sampath2,Lee Youngmi1,Kim Myung Hwa1ORCID,Kim Do Hwan3,Lee Chongmok1

Affiliation:

1. Department of Chemistry & Nanoscience Ewha Womans University Seoul 03760 South Korea

2. Department of Nano Convergence Engineering Jeonbuk National University Jeonbuk 54896 South Korea

3. Division of Science Education Institute of Fusion Science Graduate School of Department of Energy Storage/Energy Conversion Engineering Jeonbuk National University Jeonbuk 54896 South Korea

Abstract

AbstractElectrochemical water splitting is a promising pathway for sustainable oxygen production in terms of energy conversion. Seawater electrolysis, especially, is a sustainable approach to carbon‐neutral energy conversion without reliance on freshwater; however, extreme corrosion of anodic electrode caused by highly corrosive Cl is a main challenge of seawater oxidation. To address this issue, herein, nanofibers of trimetallic spinel CoCrxRh2‐xO4 with various composition ratios are prepared for highly sustained water oxidation electrocatalysis. Among a series of CoCrxRh2‐xO4, CoCr0.7Rh1.3O4 nanofibers exhibit excellent electrocatalytic activity for oxygen evolution reaction (OER): the highest mass activity, the lowest overpotential at 10 mA cm−2 and the smallest Tafel slope with robust long‐term stability under alkaline electrolyte. In addition, CoCr0.7Rh1.3O4 nanofibers deliver better OER performances in simulated seawater than a commercial benchmark catalyst (IrO2 nanoparticles), demonstrating that feasibility of alkaline seawater electrolysis with CoCr0.7Rh1.3O4 nanofibers as an OER electrocatalyst.

Funder

Ministry of Education

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3