In Situ Generation of n‐Type Dopants by Thermal Decarboxylation

Author:

Aniés Filip1ORCID,Nugraha Mohamad I.23ORCID,Fall Arona4,Panidi Julianna1ORCID,Zhao Yuxi4,Vanelle Patrice4ORCID,Tsetseris Leonidas5,Broggi Julie4ORCID,Anthopoulos Thomas D.2ORCID,Heeney Martin12ORCID

Affiliation:

1. Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 82 Wood Lane W12 0BZ London UK

2. KAUST Solar Center (KSC) Physical Science and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

3. Research Center for Advanced Materials National Research and Innovation Agency (BRIN) South Tangerang Banten 15314 Indonesia

4. Aix Marseille Univ CNRS Institut de Chimie Radicalaire ICR Faculté de Pharmacie 13005 Marseille France

5. Department of Physics School of Applied Mathematical and Physical Sciences National Technical University of Athens GR‐15780 Athens Greece

Abstract

AbstractMolecular doping is a powerful and increasingly popular approach toward enhancing electronic properties of organic semiconductors (OSCs) past their intrinsic limits. The development of n‐type dopants has been hampered, however, by their poor stability and high air‐reactivity, a consequence of their generally electron rich nature. Here, the use of air‐stable carboxylated dopant precursors is reported to overcome this challenge. Active dopants are readily generated in solution by thermal decarboxylation and applied in n‐type organic field‐effect transistors (OFETs). Both 1,3‐dimethylimidazolium‐2‐carboxylate (CO2‐DMI) and novel dopant 1,3‐dimethylbenzimidazolium‐2‐carboxylate (CO2‐DMBI) are applied to n‐type OFETs employing well‐known organic semiconductors (OSCs) P(NDI2OD‐T2), PCBM, and O‐IDTBR. Successful improvement of performance in all devices demonstrates the versatility of the dopants across a variety of OSCs. Experimental and computational studies indicate that electron transfer from the dopant to the host OSC is preceded by decarboxylation of the precursor, followed by dimerization to form the active dopant species. Transistor studies highlight CO2‐DMBI as the most effective dopant, improving electron mobility by up to one order of magnitude, while CO2‐DMI holds the advantage of commercial availability.

Funder

King Abdullah University of Science and Technology

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3