Affiliation:
1. Institute of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 China
2. Key Laboratory of Flexible Electronics of Zhejiang Province Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
Abstract
AbstractAt present, the commercial application of Li─S cells is impeded by many challenging issues, especially the shuttle effect of dissolved lithium polysulfides (LiPSs) and severe dendritic growth. Applying a sole kind of host material owing dual functions, including inhibiting LiPSs dissolution/shuttling andguiding Li plating/stripping, has recently become a prospective solution. Currently, a systematic review of advanced dual‐functional electrodes aiming at the cathode and anode side simultaneously is scarce. Herein, this review points at such dual‐functional electrodes and summarizes the recent progress from the select host materials to designs. First, the rough challenges and ordinary solutions on the single side of the Li─S cell are illustrated. Then, the potentials of different materials to dual‐functional electrodes are discussed, such as carbon‐based materials, single‐atom catalysts (SACs), transition metal compounds (TMCs), heterostructure hybrids (HHs), and polymers. After that, the design methods for dual‐functional electrodes with high performance are explored and summarized by slurry‐coating and self‐supporting (electrospinning (ES), 3D printing (3DP), solvent method (SM), chemistry vapor deposition (CVD) and vacuum filtration (VF)). Besides, the possibility of applying the dual‐functional electrodes to other metal‐sulfur cells is discussed. Finally, design principles and prospects in dual‐functional electrodes for future research and commercial application are proposed as guidelines.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Shanxi Provincial Key Research and Development Project
Northwestern Polytechnical University
Fundamental Research Funds for the Central Universities
Key Technologies Research and Development Program
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献