Regulating Photocatalytic CO2 Reduction Kinetics through Modification of Surface Coordination Sphere

Author:

Feng Chengyang1ORCID,Bo Tingting2,Maity Partha13,Zuo Shouwei1,Zhou Wei2,Huang Kuo‐Wei1,Mohammed Omar F.13,Zhang Huabin1ORCID

Affiliation:

1. KAUST Catalysis Center (KCC) Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Kingdom of Saudi Arabia

2. Department of Applied Physics Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science Tianjin University Tianjin 300072 P. R. China

3. Advanced Membranes and Porous Materials Center King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Kingdom of Saudi Arabia

Abstract

AbstractSolar‐driven reduction of CO2 to value‐added products represents a sustainable strategy for mitigating the greenhouse effect and addressing the related green‐energy crisis. Herein, it is demonstrated that modifying the surface coordination sphere can significantly enhance the reaction kinetics and overall efficiency of CO2 reduction. More specifically, the decoration of isolated Mn atoms over the multi‐edged TiO2 nano‐pompons (Mn/TONP) upshifts the d‐band center that allows favorable CO2 adsorption. Ultrafast spectroscopy demonstrates the greatly accelerated charge transfer between photoexcited multi‐edged TONP and the newly implanted Mn reactive centers, supplying long‐lifetime electrons to reduce absorbed CO2 molecules. By integrating adsorption and activation functions into the newly decorated Mn sites, the developed photocatalyst demonstrate impressive capacity for CO2 reduction (80.51 mmol g−1 h−1). The surface modulation strategy at the atomic level not only opens new avenues for regulating the reaction kinetics toward photocatalytic CO2 reduction, but also paves the way for the rational design of highly efficient and selective photocatalysts for clean energy conversion.

Funder

King Abdullah University of Science and Technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3