Artificial Intelligence‐Assisted Label‐Free Spectroscopic Quantification of Global DNA Cytosine Methylation in a Miniature Plasmonic Pickering Emulsion

Author:

Xie Yangcenzi1,Chen Mingyang1,Liu Xinyu1,Su Xiaoming1,Li Ming1ORCID

Affiliation:

1. School of Materials Science and Engineering Central South University Changsha Hunan 410083 China

Abstract

AbstractEpigenetic DNA methylations are early and frequently observed events in a diversity of diseases such as cancer. Despite the considerable clinical values for cancer liquid biopsy, quantitative analysis of DNA methylations remains a major challenge due to the lack of rapid, sensitive detection techniques. Here, an artificial intelligence‐assisted label‐free surface‐enhanced Raman spectroscopy (SERS) (iMeSERS) biosensor is reported for simultaneous quantification of C5‐methylcytosine (5mC) level and methylation ratio in DNA samples. This method utilizes the plasmonic Pickering emulsions as the biosensing platform for label‐free SERS detection, formed upon the addition of a sub‐microliter DNA sample to the hydrophobic Au nanostar‐containing n‐decane. Distinct spectral signatures of monophosphates of canonical deoxyribonucleotides (dNMPs) and the common methylation modification 5‐methyl‐2′‐deoxycytidine (d5mCMP) are identified and distinguished by the iMeSERS biosensor. The deep learning algorithms trained with SERS signatures of dNMPs and d5mCMP are then applied to the quantitative analysis of global DNA methylation. The exceptional capability of the deep learning‐driven approach is demonstrated for simultaneous quantification of the methylation ratio and level using a sub‐microliter volume of DNA samples. This work shows the power of label‐free SERS techniques combined with deep learning algorithms for quantitative analysis of epigenetic DNA modifications with great promises for clinical diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3